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Abstract
The vacuum angle θ renormalization is studied for a toy model of a quantum
particle moving around a ring, threaded by a magnetic flux θ . A novel type
of renormalization group (RG) transformation is introduced by coupling the
particle to an additional slow variable, which may also be viewed as a part of a
device, which ‘measures’ the particle’s position with finite accuracy. Then the
renormalized θ appears as a magnetic flux in the effective action for the slow
‘pointer’ variable. This ‘measurement-induced’ renormalization is shown to
have the same properties as the θ renormalization due to instantons in quantum
field theories and leads to the RG flow diagram, similar to that of the quantum
Hall effect, with observable effective θ vanishing in the limit of small coupling
between the particle and the measuring device.

PACS numbers: 11.10.Hi, 03.65.Vf, 05.10.Cc

1. Introduction

In quantum chromodynamics (QCD) and similar theories it is possible to add a CP violating
term iθQ to the Euclidean action, where Q is the topological charge and θ is an additional
parameter of the theory (see, e.g. [1]). Long ago it was suggested that vacuum angle θ becomes
scale dependent (as any other running coupling constant) if properly defined renormalization
group (RG) transformation is introduced [2, 3], and flows to zero (mod 2π ) in the infrared
limit (see also [4] for some recent works). This essentially non-perturbative renormalization
(the θ -term has no effect in perturbation theory) is due to instantons of small size. Similar
instanton-induced renormalization was also proposed for the Abelian Chern–Simons term in
(2+1)-dimensional theories [5], which was shown to have no perturbative corrections beyond
one loop [6].
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The θ renormalization, if taken literally, could possibly provide a solution to the strong
CP problem in QCD (i.e. why we do not observe CP violation due to the θ -term, for recent
reviews see [7]). However, the θ vacuum was initially introduced in such a way that θ labelled
different superselection sectors of the theory (see, e.g. [9]), i.e. it more resembled some
conserved quantum number than the usual coupling constant and probably was not expected
to be renormalized. Moreover, non-perturbative estimates [8] (see also [7] and references
therein) have shown that CP violating effects actually depend on the bare θ , so that it is not
clear what the θ renormalization actually means in QCD and how it may be observed.

Perhaps the most known example where such renormalization has proved to be important
is the quantum Hall effect (QHE). In this case, described by a matrix nonlinear σ model, the
renormalized vacuum angle is in fact defined as the observable Hall conductivity, dependent on
the sample’s size or temperature (see e.g. [3, 10]). Quite recently it became clear that charging
effects in a single electron box (a metallic island coupled to the outside circuit by a tunnel
junction), also described by a topological term, are closely related to the θ renormalization
[11–13]. This last model is equivalent to ordinary quantum mechanics of a particle (with
friction in general case) on a ring threaded by a magnetic flux θ , which can serve as the
simplest zero-dimensional toy model to study the θ renormalization in more detail.

It is possible to introduce different RG transformations for a particle on a ring [12, 13],
which lead to the θ renormalization. This toy model shows how the renormalization of θ may
be attributed to the loss of information about the initial topological charge when a given field
configuration is coarse grained. But, since in these approaches the renormalization actually
manifests itself, as in QHE, in a temperature dependence of a certain observable, they are not
very helpful in understanding what θ renormalization actually means in quantum field theories
at strictly zero temperature.

For this reason here we present a novel RG scheme, inspired by an analogy between RG
and continuous measurements, valid at zero temperature as well, which could be possibly
generalized to the higher dimensional field theories. We introduce a ‘measuring device’,
represented by an additional slow variable (a second heavy particle on the ring) coupled to
the particle’s coordinate and then define a renormalization as a dependence of its effective
parameters on the coupling strength. Now the renormalized θ appears as an effective magnetic
flux seen by the heavy particle (or Berry phase, related to its slow rotation, compare with [14]).
This may be understood, in a sense, as renormalization due to a continuous measurement of
the quantum particle’s position with finite accuracy. The resulting RG flow diagram again
has the typical QHE-like form with θ going to zero (mod 2π ) in the ‘infrared’ limit of small
coupling between the two particles. Physically such a behaviour is related to the change in the
effective charge of the heavy particle due to rotations of the fast one, which is quite similar to
the instanton-induced θ renormalization in QCD or sigma models.

2. Renormalization for a particle on a ring

Consider a particle of mass m moving around a ring of unit radius threaded by a magnetic flux
θ (in units c = h̄ = e = 1). The partition function for the model is given by the path integral

Z =
∫

Dn(τ )δ(n2(τ ) − 1) exp(−S0[n]), (1)

where n(τ ) is the planar unit vector, which depends on the Euclidean time τ ∈ [0, β] (β is the
inverse temperature) and the integral is over periodic paths with n(0) = n(β). The Euclidian
action is

S0[n] = m

2

∫ β

0
ṅ2(τ ) dτ − i

θ

2π

∫ β

0
εabna(τ )ṅb(τ ) dτ, (2)

2
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Figure 1. Two particles with different masses (M � m) interacting via the harmonic potential on
the ring with magnetic flux θ .

where εab is the two-dimensional antisymmetric tensor. Since n(0) = n(β) the model is
actually defined on a circle. The target space is also a circle (n2 = 1), so that n(τ ) is actually
a mapping S1 → S1. The last term in (2) has the form iθQ where Q is the topological charge
which distinguishes inequivalent mappings and takes integer values (equal to a number of
rotations the particle makes in time β).

The model is in fact a (0+1)-dimensional quantum field theory with an action (2) similar,
in a sense, to that of QCD with the θ -term and also possesses instantons. Classical solutions
with finite action obviously have the form φ(τ) = 2πkτ/β (k is an integer) in terms of the
polar angle φ and correspond to k complete rotations in time β. In contrast to QCD action
(2) is not scale invariant, so that there are no true instantons of arbitrary sizes, but there still
exist small size instanton-like quantum fluctuations with nontrivial topological charge (fast
rotations) that will be important for the renormalization to be introduced below.

The magnetic flux θ explicitly breaks the T invariance, the most obvious T-violating
effect being the non-zero persistent current in the ground state. This is the analogue of the CP
problem in QCD and now one may ask how the dependence on θ can be removed. One possible
answer is that the magnetic flux could be screened if we allow the back reaction of the current
on θ . This may be done by introducing an additional dynamical variable (axion) coupled to
the topological charge density. Curiously, model (2) with the axion has been introduced in
a different context to describe a shunted Josephson junction [15]. If, however, no such back
reaction is allowed, then all physical quantities (e.g. energy levels and correlation functions)
obviously depend on the external flux θ .

Suppose now that we cannot observe the particle’s position n(τ ) directly. Then we need
some kind of a device to get an information about the system. One possible arrangement of
the corresponding measuring apparatus is shown in figure 1. We introduce a second, almost
classical particle with zero charge and a large mass M � m, which is coupled to the original
one via the harmonic potential. Then n0 may be viewed as a ‘pointer’ variable, ‘measuring’, in
a sense, the quantum particle’s position with an accuracy determined by the strength λ of the
harmonic force (if e.g. λ → ∞ both particles are tightly bound and n0 coincides with n). Or,
to say this another way, the slow variable n0(τ ) may represent the coarse-grained trajectory of
the fast quantum particle.

Below we will show that the effective magnetic flux, that is measured if only the heavy
particle is available for observation is different from θ and this change may be attributed to
the renormalization due to instanton-like fluctuations of n(τ ), similar to that in the quantum
field theory.

The Euclidean action for the whole system is

S[n, n0] = S0[n] +
M

2

∫ β

0
ṅ2

0(τ ) dτ +
λ

2

∫ β

0
[n(τ ) − n0(τ )]2 dτ. (3)

3
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If we now integrate over the fast variable n(τ ), then the partition function may be represented
as

Z =
∫

Dn0(τ )δ
(
n2

0(τ ) − 1
)

exp

(
−M

2

∫ β

0
ṅ2

0(τ ) dτ − Seff[n0]

)
, (4)

where we introduce an effective action

exp(−Seff[n0]) =
∫

Dn(τ )δ(n2(τ ) − 1)w[n, n0] exp(−S0[n]), (5)

and the weight functional w[n, n0] has a simple Gaussian form

w[n, n0] = exp

(
−λ

2

∫ β

0
[n(τ ) − n0(τ )]2 dτ

)
. (6)

The main idea of the present paper is that the transformation (5), which defines the
effective action for the slow variable in terms of the path integral over the fast one, may be
viewed as a generalized Wilsonian RG transformation. From symmetry considerations, it is
clear that when expanded in derivatives of n0 the effective action should be of the same form
as S0 but with new coupling constants, depending on the interaction strength λ. It is this
dependence on λ that will be called ‘renormalization’ in what follows. In the real world λ of
course has some fixed value so that the corresponding RG flow is difficult to observe, but if
for some reasons λ is small then, as we will see below, the magnetic flux observed through
measurements made on the heavy particle will also be small.

Before we proceed further it should be noted that equation (5) strongly resembles
the so-called restricted path integral which appears in the theory of continuous quantum
measurements. In the case of continuous monitoring of the observable n(τ ) with n0(τ ) being
the measurement record (this procedure is called a selective measurement), the particle’s
propagator is given by a path integral similar to equation (5) and the weight functional w[n, n0]
is often taken in the Gaussian form, as in equation (6), where λ determines the accuracy of
the measurement (see e.g. [16]). Hence one can say that the renormalization we study here
is close to the selective continuous quantum measurement. It should be stressed however that
here we deal with ‘measurement’ in Euclidean time, so that the above-mentioned analogy is
not very close. Still we think that this is worth mentioning and may provide some deeper
understanding of the transformation (5).

Now, a few comments are in order concerning the meaning of the transformation (5) as
a renormalization. If we e.g. apply the same prescription to the 2D O(N) σ model then in
the one-loop calculation of [17], λ effectively acts as a mass squared for Goldstone modes
with the charge renormalization ∼ ln(
/

√
λ) (
 is the ultraviolet cutoff). Hence changing λ

is indeed similar to changing the scale. We now argue that beyond the perturbation theory, λ

also may be viewed as a scale parameter.
For λ large enough only paths close to n0(τ ) contribute to the path integral (5). But for the

particle on the ring it is possible that a given path n(τ ) is close to n0(τ ) for most of the time,
but suddenly makes a fast complete rotation around the ring in time τ0. For such instanton-like
paths the weight factor (6) behaves as w ∼ exp(−const × λτ0), so that large ‘instantons’
with size τ0 > 1/λ (slow rotations) are strongly suppressed (very fast rotations with τ0 � m

are suppressed by the kinetic term in equation (2)). Then with decreasing λ more and more
instanton-like paths of larger scale contribute to the integral (5). Clearly, this is exactly what
a physicist usually expects from the RG transformation in theories with instantons.

4
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3. Effective action and renormalized parameters

To obtain the effective action from equation (5) we first note that if n0(τ ) is fixed then the
action for the fast particle (up to a constant, since n2 = n2

0 = 1) may be written as

S[n] = S0[n] − λ

∫ β

0
n(τ )n0(τ ) dτ (7)

and describes the particle on the ring in a time-dependent external electric field λn0(τ ) (with
n0(0) = n0(β)). For slowly varying n0(τ ) at zero temperature one can treat this problem in
the adiabatic approximation.

There are many ways to obtain the desired result but first we evaluate the magnetic flux
that the heavy particle feels. This can be done e.g. by calculating the phase factor associated
with the adiabatic cyclic evolution of n0(τ ). If the fast particle was initially in its ground
state in the presence of the electric field λn0 then, after adiabatic 2π -rotation of the field, the
ground state will turn back to itself up to a phase factor (Berry phase [18]) which we denote
by exp(iθ ′), with θ ′ being the effective flux. If we introduce polar angles φ and φ0 instead of
the vectors n and n0 then the corresponding Hamiltonian may be written as

H = 1

2m

(
−i

∂

∂φ
− θ

2π

)2

+ λ cos(φ − φ0(t)). (8)

Let ψ0(φ) = ψ0(φ − φ0) be the instantaneous ground-state wavefunction for the Hamiltonian
(8) with the energy E0, which obviously does not depend on φ0. Then the Berry phase for the
adiabatic change of φ0 from zero to 2π is given by the standard formula [18]

θ ′ = i
∫ 2π

0
dφ0〈ψ0| ∂

∂φ0
|ψ0〉. (9)

Since ψ0 depends only on the difference φ − φ0 we have

〈ψ0| ∂

∂φ0
|ψ0〉 = −〈ψ0| ∂

∂φ
|ψ0〉 = −〈ψ0|

(
∂

∂φ
− i

θ

2π

)
|ψ0〉 − i

θ

2π
(10)

The first term on the rhs of equation (10) is proportional to the average of the derivative ∂H/∂θ

and hence

θ ′ = θ − 4π2m
∂E0

∂θ
. (11)

The nontrivial Berry phase, different from θ , means that the coarse-grained (‘continuously
measured’) trajectory sees a ‘renormalized’ magnetic field, as was discussed in [12], due to
unobservable fast instanton-like rotations. This implies that for slowly varying n0 we should
have (up to a constant)

Seff[n0] = −i
θ ′

2π

∫ β

0
εabn

a
0(τ )ṅb

0(τ ) dτ +
m′

2

∫ β

0
ṅ2

0(τ ) dτ + · · · , (12)

where dots indicate terms with higher derivatives of n0 and higher powers of ṅ0 and the
renormalized mass m′ will be determined below.

A similar origin of topological terms from a corresponding Berry phase was discussed
in detail in [14] where fermions were coupled to the background vector field in various
space-time dimensions (fermionic σ -models). Then integration over fermions results in
equation (12) for planar vector n0 with θ ′,m′ dependent on the coupling constants. Here the
fast mode which is integrated out is also the planar vector, so that it is more natural to speak
of the θ renormalization rather than of the induced topological term.

5
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There exists a simple heuristic way to derive the expansion of equation (12). Consider a
reference frame rotating with an angular frequency ω = φ̇0, which is assumed to be small and
almost constant. In this frame n0 is constant, but an additional magnetic field 2mω is present
according to Larmor’s theorem. Hence the Hamiltonian H ′ in the rotating frame should be
taken at the shifted value of the vacuum angle θ + 2mπω, or more precisely,

H ′ = H + iω
∂

∂φ
= H(θ + 2mπω) − θ

2π
ω − m

2
ω2 (13)

(see e.g. [19]), where the last term is the centrifugal potential (for the thin ring of unit radius)
and the second one is due to the presence of the magnetic flux θ . Then if the particle is in
its ground state the effective action (after Wick rotation t → −iτ and expansion in powers of
φ̇0) may be written as

Seff �
∫ β

0
dτ

[
m

2
φ̇2

0 − i
θ

2π
φ̇0 + E0(θ + 2miπφ̇0)

]

= const +
∫ β

0
dτ

[
m′

2
φ̇2

0 − i
θ ′

2π
φ̇0 + · · ·

]
, (14)

where θ ′ is given by the previously derived formula (11) and

m′ = m − 4m2π2 ∂2E0

∂θ2
. (15)

Clearly, this is the same action as in equation (12). Formulae (11) and (15) formally look
very similar to the RG equations derived in [12], though the RG transformation used here is
quite different. Note that they are independent of the specific form of the coupling between
n and n0—all details are hidden in the ground-state energy E0(θ). The dependence of E0

on θ in a general case is rather well known by now, since it determines persistent currents in
mesoscopic rings (see e.g. [20]).

4. Exact renormalization group flow

For large λ, when the effective electric field is strong, the θ dependence of E0 is suppressed
and θ ′ � θ . In this case E0 depends on θ only through instantons, as discussed in detail in
[21], and

E0(θ) � const − 2
√

S0K e−S0 cos θ, (16)

where S0(λ) ∼ √
mλ is the classical instanton action and K = K(λ) results from the ratio

of determinants [21]. Then in terms of dimensionless ‘coupling constants’ g = 1/
√

mλ and
g′ = 1/

√
m′λ, we finally have at g → 0

θ ′ � θ − D(g) e−c/g sin θ,
1

g′2 � 1

g2
− 1

g2
D(g) e−c/g cos θ, (17)

where c is some numerical constant and D(g) = 8π2mK
√

S0. These equations are
qualitatively similar to θ and charge renormalization due to instantons in QCD and σ models
[2, 3].

If on the other hand λ tends to zero, then for the free motion on the ring E0 =
(1/2m)(θ/2π)2 for θ < π,E0 = (1/2m)(θ/2π − 1)2 for θ > π and equations (11), (15)
imply that m′ → 0 while θ ′ → 0, θ < π and θ ′ → 2π, θ > π . These results are almost
obvious because at λ = 0 the slow field n0 is no longer coupled to n.

In the close vicinity of the point θ = π the situation is more complicated. At λ = 0 the
ground state is degenerate, but the degeneracy is lifted by an arbitrarily small external potential

6
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Figure 2. Renormalized parameters 1/g′ = √
m′λ and θ ′ from equations (11), (15) for different

values of initial θ . λ decreases from top to bottom.

and an energy gap δE appears. At small λ δE = a
√

λ2 + b(θ − π)2, where a and b are some
numerical constants, and after expanding in (θ − π) near the maximum of E0(θ) at θ = π ,
we have

E0(θ) � const − α

2λ
(θ − π)2, (18)

where α = ab. Hence from equation (15) m′ → 4m2π2α/λ at λ → 0 and

1/g′ =
√

m′λ → 2mπ
√

α = const, θ = π (19)

Thus for θ = π the coupling constant g′ tends to a fixed value as λ → 0. This is a kind of
anomaly (similar to ‘rotational anomaly’ of [19]), since strictly at λ = 0 there is no interaction
and m′ should be equal to zero. Certainly, for very small λ when δE tends to zero near θ = π

the adiabatic approximation used here becomes invalid.
Thus the dependence of m′ and θ ′ on λ reproduces the main features of the famous QHE

RG flow diagram. This can be seen from figure 2, where the evolution of the renormalized
parameters is shown with λ decreasing from top to bottom for different initial values of the
vacuum angle θ . The points in figure 2 result from the numerical calculation for a simplified
model when the term λ cos φ in equation (8) is replaced with λδ(φ) (qualitative features should
not depend on the particular choice of the potential in equation (8)). Clearly, figure (2) is
similar to the upper half of the QHE RG flow diagram with the unstable fixed point at θ = π

and the ultimate flow of the renormalized vacuum angle to zero (mod 2π ).
The quantum mechanical model discussed here enables, however, a transparent

explanation of why the effective θ should vanish as λ → 0. Let us return to figure 1
with two particles of masses m and M � m interacting via the harmonic potential. Note that
initially only the light particle interacts with the magnetic flux θ . One can say that the light
particle is charged with, say, unit charge, while the heavy one is neutral.

Now if λ, which determines the interparticle interaction strength, is high enough, two
particles form a tightly bound pair or an ‘atom’, exactly with unit total charge. Mathematically
this means that the topological term for the field n0 is induced with θ ′ � θ due to the
‘condensation’ of charge near the point n0. When λ decreases, the bound state gets more
loose. When the size of the bound state is of the order of the ring’s radius, rotations of the
light particle are allowed (instanton-like fluctuations) and its charge is spread along the ring.

7
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So the effective charge of the heavy particle reduces, which is seen in the formalism as the
magnetic flux θ renormalization.

5. Summary and discussion

In summary, we have demonstrated how the θ renormalization may appear in the quantum
mechanics of a particle, moving around a thin ring threaded by a magnetic flux θ . To define
the nonperturbative RG procedure we introduce an additional slow degree of freedom, which
is the coordinate of a second heavy quasiclassical particle, but may also be viewed as a part
of the measuring device (‘pointer’ observable) designed to measure the position of the initial
particle with some finite accuracy.

Then RG equations describe the evolution of effective parameters of the heavy particle,
when the coupling between the two particles is changed. For example, the renormalized θ is
the coefficient in front of the induced topological term in the effective action for slow variables
(i.e. the magnetic flux that the heavy particle feels) after fast variables are integrated away.
Probably, this is the most natural way in how the θ renormalization may manifest itself in
quantum field theories with instantons. This effective θ is also equal to the Berry phase,
associated with the cyclic evolution of the slow variables (see also [14]).

This is a somewhat unusual definition of RG transformation, since normally one expects
that running couplings should depend on some momentum variable. However, this does not
contradict the modern understanding of the Wilsonian approach to the exact RG (see e.g. [22])
and is, in a sense, similar to the so-called ‘RG in the internal space’ [23]. Moreover, it should
be noted that the procedure used here is somewhat close in spirit to the way the running θ

appears in the Seiberg–Witten model [24].
The so constructed RG procedure leads precisely to the same θ renormalization that was

found in the weak coupling limit in different field theories (instanton-induced renormalization)
and results in the typical RG flow diagram similar to that of the quantum Hall effect, which
here can be calculated exactly.

The toy model studied here shows that while the renormalization of the vacuum angle is
definitely a generic property of a system with instanton-like fluctuations it does not necessarily
mean that low energy observables are independent of θ , but is revealed, when the system is
being ‘measured’, i.e. coupled in a special way to some additional slow variable. This
mechanism, which may lead to small θ in the effective theory, looks physically different from
the direct screening of θ , as e.g. in the case when the axion field is added. In more realistic
truly nonlinear theories both fast and slow variables may be parts of the system itself, if e.g.
the effective fields we observe are different from those directly coupled to θ .
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